Protecting Social Network Users from Spam Messages Using Machine Learning Algorithm

نویسنده

  • Anita Patil
چکیده

Online Social Networks (OSNs) have become an important part of daily life. Users build networks to represent their social relationships. Users can upload and exchange the information related to their personal lives. Online Social Networks is to give users the ability to control the messages posted on their own private space to avoid unwanted content is displayed. The project proposes a new system allowing OSN users to have a direct control on the messages posted on their walls. This can be done by a flexible rule-based system that allows users to provide the filtering criteria to be applied to their user walls, and a classifier automatically labeling messages in support of content-based filtering. The system exploits a classifier to enforce customizable content-dependent Filtering Rules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Model for SMS Spam Detection Using Content-based Features and Averaged Neural Network

In recent years, there has been considerable interest among people to use short message service (SMS) as one of the essential and straightforward communications services on mobile devices. The increased popularity of this service also increased the number of mobile devices attacks such as SMS spam messages. SMS spam messages constitute a real problem to mobile subscribers; this worries telecomm...

متن کامل

A New Hybrid Approach of K-Nearest Neighbors Algorithm with Particle Swarm Optimization for E-Mail Spam Detection

Emails are one of the fastest economic communications. Increasing email users has caused the increase of spam in recent years. As we know, spam not only damages user’s profits, time-consuming and bandwidth, but also has become as a risk to efficiency, reliability, and security of a network. Spam developers are always trying to find ways to escape the existing filters therefore new filters to de...

متن کامل

Towards Online Spam Filtering in Social Networks

Online social networks (OSNs) are extremely popular among Internet users. Unfortunately, in the wrong hands, they are also effective tools for executing spam campaigns. In this paper, we present an online spam filtering system that can be deployed as a component of the OSN platform to inspect messages generated by users in real-time. We propose to reconstruct spam messages into campaigns for cl...

متن کامل

Filtering spam e-mail from mixed arabic and english messages: a comparison of machine learning techniques

Spam is one of the main problems in emails communications. As the volume of non-english language spam increases, little work is done in this area. For example, in Arab world users receive spam written mostly in arabic, english or mixed Arabic and english. To filter this kind of messages, this research applied several machine learning techniques. Many researchers have used machine learning techn...

متن کامل

A Novel Method in Scam Detection and Prevention using Data Mining Approaches

Scam’ is a fraudulence message by criminal intent sent to internet user mailboxes. Many approaches have been proposed to filter out unsolicited messages known as ‘spam’ from legitimate messages known as ‘ham’. However up to this date no suitable approach has been proposed to detect Scams. Almost all spam filters which use Machine Learning approaches, classify scams as hams when scam messages ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015